If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+140x-245=0
a = 20; b = 140; c = -245;
Δ = b2-4ac
Δ = 1402-4·20·(-245)
Δ = 39200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{39200}=\sqrt{19600*2}=\sqrt{19600}*\sqrt{2}=140\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(140)-140\sqrt{2}}{2*20}=\frac{-140-140\sqrt{2}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(140)+140\sqrt{2}}{2*20}=\frac{-140+140\sqrt{2}}{40} $
| 10r-5=15 | | 1=6+x/3 | | 1=6+x/3 | | -3-x/4=-6 | | -3+x/4=-6 | | 3+x/4=-6 | | 6=3/4+x/4 | | 2x+16/x2=8 | | 1*1/2=x/10 | | 5y2+15=0 | | 180(n-2)=9 | | 27=6x/3 | | X=4w-4w | | 1/2q=45-q | | (35-w)×w=300 | | 7x-20=4x-16 | | 14g15g=9g | | 3m+5-(m+2)=13 | | 5m+3=3m-21 | | y²-17y+10=0 | | Y(x)=5÷x+0.16x² | | n2=61(8) | | b)2 | | b)2 | | 4(3x-5)=22) | | 3x-8-4x=-12-5x+7 | | 5x+5+3x-1=180 | | -3(y-6)=y-10 | | 8x-3=5x+47 | | 1/4x-5/6x=7 | | n+n+2=98 | | 87+w=2w+11 |